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1. Sumary and Introduction

> A theory and computer program are presented for computing the transonic

fan duct and free jet flow exhausting over the centerbody of a turbofan

engine and merging with an exterior stream flowing over a nacelle. The/

physical problem under consideration !s sketched in Figure 1. For

simplicity, thIprimary Jet is treated as a solid circular body. The

exterior stream and fan duct flows are both inviscid and are represented

by appropriate differential equations based on nonlinear transonic small

disturbance theory. The position of the free jet boundary is found as

part of the solution by imposing the free slip boundary condition of con-

tinuity of pressure and slope at the linearized boundary interface. The

Mach number of the expanded Jet at downstream infinity where the static

pressure is ambient is specified, and this, in turn, establishes the

total pressure of the Jet flow by means of the isentropic relation. The

total Jet mass flux is not a free parameter but is determined as a part

of the solution by the choice of the downstream jet Mach number and

application of the Kutta condition at the trailing edge of the fan cowl.

The mass flux at the fan plane (see Fig. 1) is assumed to be uniformily

distributed. Also required is the distribution of axial velocity along

a transverse plane exterior to the nacelle and upstream of the fan exit

(see Fig. 1), and the Mach number of the undisturbed external flow at

infinity.

Numerical solutions are obtained by finite difference algorithms based on

the original developments of Murman, Cole, and Krupp (Refs. 1-9).

Figure 2b shows a typical example of computed streamline patterns, jet

boundary slope and sonic lines. For this particular example, there

REV SYM aPAP W IO. 1-0 D64101
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0v

occurred an imbedded region of subsonic flow adjoining the centerbody

downstream of the fan cowl exit plane. Figure 2a shown the corresponding

pressure distributions on the centerbody, on the interior wall of the

fan duct and along the free streamline dividing the jet and the exterior

fow. No comparisons have yet been made with experimental data.

N

This report presents a complete derivation of the theory, a description

of the finite difference procedures employed, and several examples of

calculated flow. A description of the computer program is given in the

Appendices together with instructions for its use.

7/

0

0 -
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a

2. Derivation of the Transonic Small Perturbation Differential Equations for

the Flow in the Duct and in the Extarnal Stream

Since the entropy change across a weak shock is third order in the

pressure Jump, we shall assume irrotational flow and introduce a velocity

potential J which satisfies the following differential equation:

S(a +j2  *f1, (A fr~ 2 4j f

where x and r 1 are the dimensionless axial and radial coordinates based on

duct length, and a is the local velocity of sound given by

2 AI I
' + (Tiv~ 7 . ~ (2)

with U., denoting the velocity at infinity downstream. We now introduce

a perturbation velocity potential (f with a small parameter 6 in the

form:

f,=u( -V +c

Since small disturbances are propagated normal to the principal flow

direction in a nearly sonic free stream, we introduce a scaling factor in

the r1 direction. This is expressed by

*r

where '. and e will be determined appropriately in the following develop-

ment.

REV SYM W mfW No.n6.-,,1,, *
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Boundary conditions on the body are linearized. Let rb(x) = d/2+ CRu(x)

define the boundary of the nacelle adjoining the free stream. Here d' is

a thickness ratio associated with either the nacelle or the centerbody. At

rI M d/2, the boundary condition that the flow be tangential to the nacelle

wall becomes

Substituting the perturbation velocity potential yields

It is convenient to let

I/ (=)

and th- boundary condition takes the familiar linearized form

$o. = ; ICK) at ,- .= 'r, (5)

The velocity of sound to the first order in 0 becomes

a. ( Z' //M' -(r-t)acfx +~ oe') (6)

Substituting the preceding relation for a/ 2  into the differential

equation (.) and neglecting terms of the order of C yield

xLL

We consider the limit as M. approaches unity while the perturbation

d£ parameter 6r arproaches zero. Thus, we define the limit

0

* Letting
a

REV SYM aMA4 ""D641078
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L (8)

renders the r derivatives of the same order as the x derivative and yields

the well known transonic small perturbation differential equation in the

form

Equations (8) and (4) enable us to determine E and 7 in terms of

the free stream Mach number and thickness ratio ;

and 2/3/ /3

Also for If, we have

Note that in the limiting process we retained some non-linearity in

the differential equation. Equation (9) is elliptic when

<

and hyperbolic when

The quantity(/(? I) ig the sonic velocity.

We now apply a similar approach to the duct flow. Let M. be the Mach

number at infinity downstream where the duct flow and outside stream have

REV SYM AlrfAVJP "o.D6-41078

PAE13



the same static pressure. Then for the perturbation velocity potential we

define

L)* (~ 4(12)

The velocity of sound in the duct is given by a relation similar to Eq. (6)

i.e.,

C- 6O(-" (13)

Substituting Eqs. (12) and (13) into the differential equation (1) leads to

the equation

Milt (,., ./r) o ,)
f, p (L

We shall retain the same scaling factor Z as in the outside stream.

Thus

C2 2(5

and

The transonic parameter I for the duct flow is

i~~~f fC-4)61 -cI/"J ('i ) (17)
j A

and the differential equation for flow inside the duct becomes

at a (18 )

For the duct walls defined by r1 - d/2 + JR' (x), the linearized boundary

S

REV SYM ,m l.D6-41078
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conditions take the form

or

The transonic small perturbation differential Eqs. (9) and (18) are

non-linear and practical analytical solutions are difficult to obtain. In

the sequel, the equations are expressed in difference form and numerical re-

laxation techniques are applied to find the solutions for specific flow con-

figurations.

3. The Pressure Coefficient for the Transonic Small Perturbation Theory

We shall now find the relation for the pressure coefficient as calcu-

lated from the solution of f from the transonic small perturbation

differential equation. From Bernouilli's relation, Eq. (2), and the

definition of r , we have

9 +('-r -(,-+e )+o(e<')

For the pressure p in terms of a, we haveS ,/rr-1) a,,..- 3 ai . '/. _- /,- 066,'

0 Introducing the pressure coefficient yields.

0*u

REV SYM M NO.D6 -4 10 7 8
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Following a similar procedure for the duct flow we obtain for the pressure

coefficient,

Since the pressures of the two streams balance at infinity, P. = P

and the condition that the pressure balance on the boundary streamline

between the two flows is easily seen to be

where the superscriptsoo and j denote the limits of freestream and duct

velocity perturbation potentials, respectively, as one approaches the

boundary streamline.

. Rate of Mass Flow in the Stream Direction

The magnitudes of 9X, at the fan plane evolves as a part of the solution

and is subject to periodic updating during the course of the relaxa-

tion procedure. For this purpose, we derive a formula for the mass

flow rate which is required for updating (ex as the computation pro-

gresses. Neglecting the cross component of velocity, we obtain the

following relation for the local density in the Jet

Expanding and retaining terms to the order of e. yields

p/p, = -,,+j E6 ,.Y + , i' -- ,Q ,. 6-,.v, Y' -1*

This may be written in the following form by regrouping the second order

terms:

REV SYM Nffanp i 'o. D6- lo78
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0(22

Since th 6a(tf i - f.? 44C the third term may be neglected.

The rate of mass flow per unit area then is given by

ino cj( 1 n o1 i+ (23)

J CE')

We note that this may be written

- *, 1 (24)

The last term is seen to be of higher order than the preceding terms. The

reason for retaining second order terms in 6becomes apparent when we

introduce

Ai

, P &1CDf -I, - ,l) (26)
Solving Equation (25) for yields

a Lu, (27)

REV SYi A WjwN ko.D6-41078
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fJith the mass flow rate m computed from an intermediate solution, the

value for 0 at the fan plane is updated in terms of the values of x
x

from Equation (27), keeping the total mass flux in the jet fixed. A rela-

tion similar to Eq. (27) for the exterior stream is easily written down

by replacing K. and c. by K and C, respectively.
0

5. The Physical Problem to be Solved and the Development of the Boundary

Value Problem

We are interested in finding the pressure distribution over the back part

of a nacelle and on the duct centerbody over which the air from the fan

flows. The problem is idealized to the flow field illustrated in Figure 1

with a solid body replacing the central jet flow. Since we linearize the

boundary conditions on the solid boundaries and on the free streamline

boundary between the duct flow and the outside stream, the idealized flow

is expressed as a boundary value problem for the perturbation velocity

potential. This is presented in Figure 3.

The boundary value problem appears to be well posed, since the value of

the potential or its normal derivative is prescribed on the boundary. "How-

ever, the application of a Kutta condition at the fan cowl trailing edge is

an additional restriction which requires that the magnitude of vX at the

fan plane not be arbitrary, but must be determined from the solution of

the problem. This value is found from computing the mass flow in the free

jet far downstream and determining the value of o at the fan plane which

satisfies conservation of mass in the duet and jet. The mass flow from the

duct calculated far downstream is not a sensitive function of the initial

guess for 0. at the fan plane (which must be input) but is dependent ulti-

mately upon the choice of undisturbed free jet Mach number because

of the Kutta condition. The input fan

REV SYM Poo. D6 -41078
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plane boundary conditions are corrected from calculations of the con-

servation of mass as the solution progresses. The freestream Mach number

Ho and the free jet Mach number, M , are two parameters which must be fixed

in the calculations.

The differential equations in the two regions are expressed in dif-

ference form and the flow field computed by means of relaxation techniques.

6. The Difference Equation for the Interior Points of the Flow

To apply relaxation techniques to the boundary value problem in Fig. 3,

we divide the region into a rectangular mesh by lines parallel to the x and

r axes. The spacing is generally not uniform as greater accuracy is achieved

in minimum computing time by using a finer spacing near boundaries for the r

variable and finer spacing near rapidly accelerating or deceleratin regions

of the flow in the x variable. Let the subscripts 1, j denote the values of

the variables at typical interior points given by the coordinates xi,r .

The second derivative in the x direction at x = x i and r a r is expressed

in difference form for subsonic flow by using the values at points on the

both sides of the point i,j and is easily seen to be

__ _ __L+,ifjS

-- I,. (,

(28)

0. (29)
!,. I! / - X?./)X I- x, ')

0-

REV SYM AMWJA IMo. D6-4 107 8
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The notation as used here is suggestive of the notation used in the Fortran

statements of the computer programs in order to make it easy for the user

to understand the computer programs from this discussion.

For the derivative with respect to r, we use a similar central difference

formua, for both subsonic and supersonic flow.

Crf r)rr ( f * - i- '," - ' J-,1-
V .J- S" b - Y., - "- C]r -)

= 2 4i' Sj-, -a6 , ,.) - 2-k.  "j-, (so)

where

(31)

J. = ./r (,. -r)( r ,-r' )
J J~t/,, J1I - 4I

and we introduce the convenient notation

r r .r -+/ (32)

To complete the difference form of the differential equation, we

require a representation of the first derivative with respect to x. For

points equ a. spaced a AX apart, the difference form

4 ,4 j- 'j, ) 12 &

approximates r to the second order in 4U at the central point i,J.

To obtain a second order form for when the points are not equally

- spaced, we write

REY SYM ifO.D6-4i07R
PAGe 21



and determine 4 i'and d1 j appropriately by Taylors s$rC"E expansions

about ij. Let h -x i and h 2 = x. - Then expanding about the
' 1 -x 3 2. i-il

point i,J yields

-f' & v9 / cC / r(

Setting the coefficient of equal to 1 and the coefficient of the

term equal to zero yields two linear equations to solve for cli and dli

The result is

Cr (,/ 4.r ) C,
- # (35)

d.- Ux., - , W,

For inside the duct we define the difference form

a 2
,( /36)

and for the outside stream, we use

- , .,-,,zc,+s <' + ; ,--../1 NE

REV S1 '), MWA(P I .oD6( - 4107 8
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By applying Eqs. (28), (3O), and (36) to the differential equation (18)

when the flow in the duct is subsonic, we obtain the following difference

equation

~.V?44(f~,J e, e. .d(38)

"* -040 ( - ., , - ,b.,,, = 0

In the relaxation process, we solve for the values of 9 along a column

x = x I in the flow. It is therefore more convenient to write Eq. (38) as

?Ia, , - ,. e, .*a--ob. + b,.€,..,,

In this form, with via regarded as fixed, a set of linear equations for the

values of Y along x - x, results. The matrix of coefficients is tri-

diagonal and is easy to solve. The non-linear equation is solved by itera-

tion. The quantity vij is defined by the values of f from the previously

iteration and then (f is found from solving Eq. (39). The calculations

are repeated with vii determined by the recently obtained values of . The

iteration is continued until the required accuracy is achieved.

When the flow is supersonic, i.e., when v i < 0, we use a backward

difference formula in the axial variable x Instead of the central difference

formula described above.

Hence,

(00

REV SYM A Po. D6 -410 7 8
PAGV 23



With Eq. (40) substituted for the first term in Eq. (38), we obtain

the following equation equivalent to Eq. (39) for supersonic flow:

(41)

The points at which vi < 0 but vi-lj > 0 are parabolic. When this occurs,

Eq. (41) is modified by setting vi_1 j = 0.

For the interior points of the outside stream, similar equations result

but with ui j and ui-l j  replacing vi j and v j , respectively.

7. The Application of Wall Boundary Conditions to the Difference Equation at

Mesh Points Adjacent to Boundaries

The application of the boundary conditions near a solid wall is more

easily made when the mesh points are not included on the boundary but a half

mesh point width away. Consider first the lower boundary. Figure 4 shows

the points i, J = 1 and 2 and the boundary point where the boundary con-

dition is applied. The r derivative becomes

[r~cf, -, 4 ac I ii= b r , r
r, r (42)

where for convenience we choose r0 - rb - (r1 -rb) - 2rb -r1 . From Fig. 3,

the introduction of the boundary condition yields

6

(43)

REV SYM EAr7Am Wp lo.D6-41078
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FIGURE l COLUM MESH POINTS ILIUSTRATING THE APPLICATION OF

THE LOWER BUNDARY CONDITION
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o2

= , , - ; - z , ((r - , .

where

The difference form of the differential equation then becomes

Rewriting in tridiagonal form for the ith column relaxation yields

(b,1  .,.,")7., +b,'f,. -- (45
at (45)

When the point is supersonic, we have instead,

(46)

l,. I. (e,., y'., -,~ -- , io,-, , ) , .

For the upper boundary, situated at r = rf, halfway between the r.

and rj + 1. we obtain a similar relation of the r derivative (see Fig. 5).Jm +

JIN (47)
2/
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where 0 S r r .( i (4~8)

The equation equivalent to Eq. (45) then becomes

/-~I (V?, -toi - ): V '. - - (R,

When v.. 0 0, then Eq. (49) becomes

aj qP.j;_ + (v .- c,..., -&,.) , )- 5o
C. (50)

For the point r = r +i' the application of the boundary conditionJm +

in Fig. 2 by comparison with Eq. (45) is seen to yield

where x rp Ir. Cr'- - (52)

A formula for the hyperbolic case analogous to Eq. (46) for the outside

stream may easily be written down.

8. Application of the Prescribed Inlet Flow Condition to the Difference Equation

Along the line x - 0 in the duct as well as in the outside stream, we

prescribe the values of 0 at the points of the mesh r - r, j - 1 to

0 mx Iet I f(r) at x - 0 and define f, a f(rj). For K at x =

we follow a procedure similar to that used for the r boundary conditions.

REV SYM ~AFAPVP o. D6 -410 7 8
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For convenience we introduce the potential

y. -- N i - fr, I)

Then the x derivative term of the differential equation becomes

Expressing this quantity in difference form leads to

,< i p~(/) %. o / , -o 5

where the superscripts 3/2 and 0 denote the value of at x = (x +x2)/2

and x = 0, respectively. We define x0 =-Xl, and we obtain, after factoring

Eq. (54),

Since = f ,"we-have- an

Replacing the variable I yields

(YI) 5~-[ -'%H(% J f~ 6)

22A

REVSYM Ap W,014P oZ6-41078
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We define fAI *2 - I J()

To make the notation consistent with the nomenclature for general values of

x, we write

(58)

where cl = 1/2(x2 -xl) and d1 i 1/2. The differential equation at the

point x = x and r r takes the following difference form

Expressed in tridiagonal form, this becomes

JL j IjI J Jt (60)

where cI = I/(x 2
2 - x2 1 ) and dI = 1/(x2 + xl). Similar equations may

readily be written for the duct equation with v'i defined by Eq. (56) with

ey(1 - ))k/( - . The relation for j = . and j = j + 1

is easily found by setting a, = 0 and adding the appropriate boundary term

to the right hand side. Similarly for j = J , b is set equal to zero and
Im im

the term-t? -Added to the right hand side.

For subsonic points in the flow field, over-relaxation is employed by

the program in the manner of Mhurman (8). However, it was found that over-

relaxation at the inlet interfered with the satisfaction of the rX boundary

condition at x - 0. This was remedied by varying the relaxation parameter

w continuously from unity at x - 0 to about 1.3 to 1.7 at x M X(IO).

92REV $YM BaW w "0 6"4107 *
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9. Application of the Boundary Conditions for the Interface Between the Free

Stream and the Duct Flow

The boundary conditions of continuity of slope and pressure across the

free streamline boundary will be applied at the line

r- r =(r. tr. ) /Z (61)

for x > xio or i>i O . We have shown that the relations between the stream-

line slope and.the r derivative for both the interior and exterior flows are

Continuity of slope across the streamline then yields

^ 1 (62)

For the continuity of pressure we have

Since this relation must hold at all points of the free streamline, we can

integrate from the trailing edge point to the point xjV We obtain

Letting 7- we restate our boundary condition as

g V - (63)

REV SYM mwE7wri IwD- 410 7 8
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The quantity &Q? is a constant for the entire free streamline and is computed

from the values at the trailing edge at each iteration.

We shall satisfy the boundary conditions on the free streamline at

the centerline point between r = r and r = r. To simplify the re-

lations we shall further assume that the lines r = r jm- to r = r.m+2

are equally spaced a distance h. Since ( is defined only at the mesh

points we apply Taylor's expansions to find Y at the midpoint r = rf =

r m+i/2. Thus, for on both sides of the free streamline, we have

r T 4> 1irh9'., (64)

where we have dropped the superscripts on the right hand side since the sub-

script adequately defines the ( values. In the preceding two equations

we replace Yr and frr derivatives by differences. As in Eqs. (33) through

(35) for the x derivative, we develop a secondorder difference for 9' and

obtain

Q ((65)

r

Similarly for the second derivatives, we obtain A

1. . .. 2 -4(27 .-.

*£ V.'(66)

rr( Y. -

REV SYM i mo.D6-41078 *
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Substitution of Eqs. (65) and (66) into Eqs. (64) and solving for (f

and Yjyields the following two equations for the values of ? on the

two sides of the streamline

INJu (67)

J -,

Two more equations for r and 9, can be obtained from the

difference forms of the partial differential equations at the mesh points

ij m and i,Jm +1. The r derivative for r - rim takes a form similar to Eqs.

(42) and (47); i.e.,

0) 
8

r fr) r (68)rsl F ,

From the definition of a and b we recognize that Eq. (68) may be written
Jm m

Similarly for r = r, we find thatJm l

r ' I- r.,)- e f 1 (70)

Substituting Eqs. (69) and (70) into the difference form of the differential

£ equations yields, for vi1  and u OP
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vj fj j',:-, ,.' d,,- ) , .h.. (,,()a -Op..'., -=

(71)

For later convenience, we solve Eqs. (71) for r and and rearrange

the terms to obtain

h ,. ./J - 7..i A, f. +
(72)

where
At ( ef uq. ,  bi ,

,1  ,jie,. + .'.xL - v cc  (7,3) i ,-

When the flow on either side is supersonic (zA,. Or .'i a )

then Eq. (72) holds but with A,, B1, and A 2 and B2 defined by

A: Ci,'(r. .. , - b(4.,

With the boundary conditions of Eqs. (62) and (63), the quantities
1r  'J may be eliminated from Eqs. (67) and (72).

Using Eqs. (62) in the form

S
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yields from Eq. (72)

(76)

When we subtract Eqs. (67) we obtain the single equation

1j. j~-a(77)

where A is a known constant which for the final converged solution must

agree with the jump at the nacelle trailing edge and at infinity downstream.

Eliminating the r derivatives in Eq. (77) by Eqs. (72) leads to

C, 4, a3Jj ;j 14 ) - , - +' 5Aj/6 ) fl.t(9- 5A,1/4i.. ,..
(78)

- (-ib* /4* . -t f

Equations (76) and (78) are the equations for j % jm and j = Jm +1

required to complete the set of equations for the column relaxation procedure.

In this form, the matrix is no longer tridiagonal and more sophisticated

methods for solution would be required. However, the tridiagonal matrix is

restored by first eliminating from Eq. (76) and (78) and then

eliminating . After simplification, there results

o

RIY SYM 1 .o.D6-410 7 8
IAG* 34



y , +2+,

(79)
+ b -tP1'j A 1C o..

00 J.tiJ~w

2. 9M 22 a1 b '

e,%, (jn), (80)

b- (Ib3o+ bj) 0+ ra +
00]I ,.> J,.

Equations (79) and (80) are based on a second order expansion of

about the streamline points. A simpler first order theorY can also be

derived. In place of Eqs. (64) we write

(00) = I,' -h P

Cj ) = 0f:,+ (hr'~,

With , given by Eqs. (65), we have

Similarly,

(-))
0
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; Substracting these last two equations yields

This relation is simpler than Eq. (67) since it does not contain the first

derivative terms. The continuity of slope leads to Eq. (76) for the other

equations required to complete the system of column equations. The tri-

diagonal form of the system is preserved by first eliminating Y. 1+ 2

and then , from the two equations. This yields the following

two equations in place of Eqs. (79) and (80):

S•2r

=-tMj +,, - . 4,;.,) ,

10. Application of the Method of Relaxation to the Solution of the Boundary

Value Problem in Figure 3.

In the foregoing analysis, we have formulated the difference equations

corresponding to the partial differential equations of Eqs. (9) and (18)

for points in the interior of duct and outside stream, for mesh points near

S the solid boundary, on both sides of the comao streamline of the two flows,

a and near the inlet regions. We have expressed these equations in a form for
4 *

a ~ ~ ~ ~ ~ ~ ~~PG -(36 .;a-a-bjA)r'
0. Applicin the Methos of elaxgatoun tof the Soluo of i.the s Boun ary o

Vau rbe i iue3

Intefreon nayiw have fom led 1 thediferece4107ion



are non-linear in (P since the quantities u and v also include the
ij ij

term When ui and v are assumed to be fixed and determined by
ij iqj

the starting or previously iterated values of '" , then the set of

equations for the i column is linear in The matrix is tridiagonal in

form, and is especially easy to solve. Each column is iterated until con-

secutive approximations of are within a specified accuracy. For a

more comFlete description of the numerical procedure the reader is referred

to the papers by Murman, Cole and Krupp in the references at the end of

this document.

The required relations for computing the flow field have been presented

in sufficient detail in the preceding analysis to set up the procedures for

the numerical evaluation of the flow field. In Appendix I, the results of

the foregoing analysis will be summarized in a form used directly in the re-

laxation procedure. In this way, the reader will be able to follow more

easily the computer program coded to perform these calculations.

ll. Calculation of Streamline Pattern and Duct Uass Flow

The application of the Ktta condition at the nacelle trailing edge

requires that 5 at the fan plane not be arbitrary but be determined as

part of the solution for a specified value of 14 far downstream. This is

found by requiring that the total mass flow at the duct inlet be equal to

the calculated far downstream value. For convenience we prescribe a uniform

mass flux distribution at the fan plane "d absi that the streamlines

far downstream are also parallel. The mess flow rate is then given in

term of by Eq. (25).

*To evaluate the mass flov rate in the free Jet far downstream we must
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determine the width of the duct flow at this station. Because of the

linearized boundary condition and the rectangular mesh, the streamline

pattern can be approximated by integrating the flow direction along lines

r equal constant (3 equal constant in the mesh). Thus
X

In terms of the perturbation potential this becomes

The scaled variable r is given in terms of the physical variable rl, by

r = Tr 1 . Since T f we obtain, finally,

S a 4

Wx) I~ /4~) - ?,A k (81)

The derivative at the point rj is found by fitting a polynomial through

the mesh points along the line xi = constant, differentiating with respect

to r and setting r - r The integration in x is performed by the

trapizoidal rule.

To calculate the mass flow rate far downstream, the quantity m is

computed by Eq. (26) for values of RN) on the boundaries and in the center

zNf the duct flow. Using a polynomial fit, the total mass flow is found by

integrating R "

2 f Idr

v wm and are the final values of r calculated by Eq. (81)

I for i.i and jej . Withau mt/Ad
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where A0 is the boundary area of the duct between r i and rjm,

Eq. (27) yields the appropriate value of 9OX to assign to the inlet for

the next iterations. The inlet value of 9 is updated from time to time

until the relaxation converges to suitable accuracy.

12. Examples of Calculated Flows

To demonstrate the operation of the program TEA-343, the configuration

described by the coordinates in Tables 1, 2, and 3 was used. The maximum

radius of the centerbody wall and the end of the fan cowl and outer duct

wall all occur at the axial position x = 1 in the dimensionless variables.

The thickness ratio (used in the parameters K andE was chosen as the in-

crease in centerbody radius from x = 0 to the maximum radius at x = I

divided by the section length. For the data in Tables 1, 2, and 3, this

value is-S= 0.15. For convenience, the boundary value fat x = 0 in the

duct was chosen as uniform over the fan plane. The boundary values along

x = 0 in the outside stream were chosen to vary with r like 1/(r 2+1)3/2

which is the variation for the incompressible solution fro a source and

sink at the axial positions x = + 1 in a uniform stream given by Milne-

Thomson (10) on page 486. With"pon the fan cowl at x = 0 given by C=

-0.06 the flow was computed for a Mach number of the exterior stream of

moo = 0.9 and a duct far downstream Mach number M. = 0.9. The duct Mach

number M was increased from M j = 0.9 to 1.25 by increments of .05. Each

step required 200 to 300 iterations and complete convergence was not

necessarily achieved at each step. It was found that the iterations failed

to converge if the first estimate of ,at the inlet of the duct was too

Z far from the correct value. A first estimate of is found by satisfying

the conservation of mass flow through the fan plane under the assumption

of a uniform flow at Mach

a
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* TABLE 1

COORDINATES AND SLOPE OF NACELLE

I X R RUX DER
,t 010 0 QiCog . O. 1 .012 ,7 -0D.19_
2 .030000 1.106106 -. 0336-38 -. 005874
3 .050000 1.105950 -. 055793 -. 009751
!j .07% mn 1tng7 - flBRIA.36Q . _iakLra
5 .110000 1.105020 -. 121287 -. 021198
6 .154000 1.103906 -*1683 7 -. 029416
7 .204000 1.102206 -. 220701 -. 038574
8 .254000 1.100052 -. 271991 -. 047538
9 .308000 1.097228 -. 326145 -. 057003

ic .3i00G 1.094032 -. 377076 -.06S90
11 .410000 1.090527 -. 424923 -. 074268
12 .460000 1.086608 -. 41666 -. 082437
13 .510000 1.2286 -. 517336 -. 99041.
14 .560000 1.077570 -. 561842 -. 098198
IS o604000 1.073102 -. 600121 -. 104888

6 .i3AfflQ I. fQic4aq -. 1 1 --ing sA
17 e664000 1.066540 -. 650% 3 - .113771
18 .688000 1.063768 -. 670826 -. 9.17246
19 .710300 1o0611s4 -,688629 -.120393
20 o730000 1.058718 -. 705011 -123221
21 .750000 1.056225 -. 721015 -. 12601e
22 .770003 1.053677 -*7Ai843 - A2878
23 .79000 1.051074 -. 752495 -. 131520
24 .810000 1,018417 -,767970 -. 134225
25 .830000 1.0 457.05 -2783268 -*136899
26 ,650000 1,042941 -. 7q839 0 -9139542
27 .870000 1,040124 -. 813335 -,1421S 4
2a .gOpQO t. 0372 r. - . R 2A0 S I -. I &&" q
29 .910000 1.034335 -. 842695 -o147285
30 .930000 1.031364* -. 857111 -. 14)809
31 0950000 1,028343 -. 8710 - .15229 L
32 ,970000 1,025272 -a 8854L2 -,154751
33 o990000 1.122153 -. 899298 -*15?178
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*TABLE 2

COORDINATES AND SLOPE OF UPPER FAN CONTOUR

I X R RLX DER
I.oi01Lan - q66fib flOh q? 8 -n0 Ii n
2 o030000 .966320 -.018620 -.003254
3 .50000 .966239 -. 027177 -.004750
IA .7 qA6n Qq - n3qfA -fnnlQAmA

5 .110000 .965892 -. 034333 -.006001
6 .151000 .965666 - 021931 -.003833
7 -20!U0._ . 9 6560 1 .a2 .1nnlqg
.8 .254000 .965902 .061715 .010800
9 .308000 .966632 o139082 .024309

In .-r 0 1nnnn .n gAmR,; . ,,, 7 n thI n-lflp
11 .410 00 .97101.1 .34642 .060551
12 .460000 o974627 .47742 .0834 ,0J +00 .7I7A_... • 617_ 7' t OE '9 2a
14 .560000 .985653 .797177 .139330
15 e604000 .992407 .950629 .166150
16 .638000 gq7Zqq A471, jtgafls
17 .664000 1.001588 .85348 .14.9172
18 ,688000 1.O054.1S .970308 ,169589
19 .710000 1*009321 1:049468 .183425
20 .730000 1.0 12941 o998243 .174472
21 .750000 1.016193 .704.03 .152128
22 .770000 I.01qI13 _.R12S37 -t1pi 4
23 ,790000 1.021944 o8021.80 .140256
24 e610000 1.024615 .?09331 .123976
25 .830000 1.026789 o521981 0091231
26 .850000 1.028242 308549 *053928
27 a o87 000 lo028963 9118659 .020739
28 .890000 1.029Z08 .01,1472 .*0 724 g
29 ,910000 1.029176 -9096524 -,016870
30 o930000 1028296 -. 409605 -071590
31 950000 1.0I26717 -*422600 -.073861
32 *9?0000 1.02S00 -.52059 -.090961
33 .990000 1.022617 -1.053439 -.184119

8i
0
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number Mj through the fan exit plane at the trailing edge of

the fan cowl (Fig.l) , and the program corrects this value

during the computations.

The distributions of pressure coefficient on the centerbody

and on the duct flow outer boundary are presented in Fig. 6 for

Mj = 1.2. The coefficients are based on the exterior free

stream dynamic pressure. The velocity is seen to be highest

and the pressure coefficient lowest at the point of maximum

centerbody radius x = 1. The streamline pattern of this flow

is shown in Figure 7. The duct flow is accelerated to supersonic

velocities leading to the sharply curved sonic line terminating

close to the fan cowl trailing edge. Note that the flow near

the centerbody is rapidly decelerated by a shock resulting in a

small local region of subsonic flow.

Figure 8 shows the pressure distribution on the centerbody

and duct flow free streamline for a duct Mach number of M,, = 1.2.=

For this value of the Mach number, the duct flow remains super-

sonic downstream of the curved sonic line as seen in Figure 9.

The flow decelerates from the maximum value at x = 1 but does

not become subsonic. The streamline pattern is very similar to

that for M.0 - 1.20.

The centerbody of Figure 9 was extended downstream as shown

in the streamline pattern of Figure 10 (See Table 3). This

corresponds more closely to the actual flow conditions and the

resulting pressure distribution shown in Figure 1 is similar to

0 that of Figure 8 in the vicinity of the fan exit plane.
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APPM~IX I: SUMMARY OF THE EQUATIONS USED IN THE

COMPUTER PROGRAM TRANSDUCT

The equations to be solved at each column i have been expressed in a

form which yields a tridiagonal N x N matrix for the coefficients of the

variables, where N is the number of values of Pin a single column. The

elements of the matrix are described by three N dimensional vectors. The

coefficient of the diagonal term in the J t equation is the com-

ponent of the vector denoted by

DLAG( J)

in the program. The vector of coefficients of 9F . to the right of the

diagonal is designated as

SUPER(J)

while the vector of coefficients to the left of the diagonal (0 J. 1 is

designated by

SUB( J)

1. Coefficients Eased on the Mesh Points

'Wdhen the distributions of the z 1 and r are established, the co-

efficienta depending upon these quantities can be determined once and for

all at the ouset of computations. For the x coordinate, we define

X2 2D

c i l/(x .il -Xi) (xi+1 -1

d, 1/(X2 +X1) (1

d i /X 1-1) (X+ -1 )

cU7- 1/2(X2 -Xib.cu - (Xi - X L-) ci
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For the r coordinate, we obtained

a =0

aj (r + ri..1 )/ ra (rj 1 - r. 1 ) (r - ri.1) j >1

bj (r + r )/2 r (r r ) (r -r) .1

The value of b1 follows the preceding formula for r0 = 2r - rl, where rb

is the mean scaled radius of the inner duct wall. All the preceding co-

efficients are computed in the subroutine MESH.

2. The Vectors: SUB, DIAG, SUPER, and RHS

In the mesh for the boundary value problem described in Figure 2, we

define the maximum number of r - constant lines by JMX (j max) and the

maximum number of x - constant lines by IMX (i x). For I < I0, the flow

field is divided into a duct flow and the outside flow over the nacelle

which are solved separately in the relaxation process. The number of points

along constant xi nside the duct is JM (jm in the text).

The vectors, SUB, DIAG, and SUPER are N dimensional, where N is the

number of points in a column. The vector components are identified in such

a way that

SUP.R(N) - SUo(l) 0;

Thus, the jth equation for each I is seen to be described by a FORTRAN

statement of the form

SUB(J)*P(IJ-I) + DWA(J)*P(I,J) + SUPER(J)*P(I,J I) - RHS(J) (82)

where P(I,J) - 4 and MS denotes the right hand side terms of the

equations. The subroutine TRISOL which solves the tridiagonal system then

is called by a statement of the form

REV SYM fAMAM W w o.6-41079
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CALL TRISOL(SUB,DIAG,SUPER,RMS,PHI,AUX,N) (83)

The quantity PHI is the vector solution of P(I,J) for fixed I in the set of

equations described by Equation (82), AUX is an N vector of storage required

by the program. By comparing Equation (82) with the equations in the

analysis one can write down the formulae for the vector components of SUB,

DIAG, SIER, and RHS.

The quantity 10, (i 0 in the text) denotes the line x - constant of the

mesh which intersects the nacelle line of Figure 2 nearest the trailing

edge. For all values of i < iO, the colmun set of equations is divided

into two parts, the duct flow and outside stream; and the two sections of

the colum are solved separately in the relaxation process. For i > iO,

the entire column encompassing both flows is solved simultaneously.

3. Formulation of the Column Equations

Because of the initial condition

V X  - f(r) (84)

at x a 0, the column i - 1 is a special case. Frc comparison of Equation

(82) with Equation (60), we have

SUB(J) a 2 to J

sUPER(J)b J 1 to Jm -1 (8)

DIAG(J) - -(v c1 + a i + b3 ) J -. 2 to JM-1

m(J) - -v (c 1 ' 2j d1fj) j " 2 to jI-1

SIJPER(JM) -0
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where fj . f(rj) and

vj = (1-M 2 )k/( -M. 2 ) - ( 1 + 1) [ c1( 92j" ? ) + (86)
a3_lfj I

By comparison of Equation (82) with Equations (45) and (49) we

obtain

DIAG(l) - -(v11c 1 + b )

RHS(l) .,-val.(cl ' 21 - d1,f1 ) + O('R'(xl)

DIAGG€M) - (vlj cl + 8jm)

RM (,M) = -im, (c1 3 2.' - dfjm) - *' 2 R'(x 1 )

where e ,.-x r - r

and 0<.a*- ) r+ (88)

The J)-1 values of C lj are solved by TRISOL and iterated. For i I

and Ja G j < " j MCC, obtain similar relations. For J - 1 to JMI - JM =

JMX-l-JM, we define the vectors for the column above the nacelle as

SU(J) = aaj +  SUB(l) 0
SUPZR(J) - bjamt I

DLAG(J)= - (Uij Wj C, + aj j + b j3  ) (89)

RHfS(J) a-uijm.J (c, r 2i I - dIfiij

and

sUPER(JXXI-,) . 0

DLAG(l) = - ,+ + .l,) (90)

.. ) a 1-u.,.U. (Cl 2 j,. - , .il) + ')
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where 14 ±dijl
(91)

and
(rj,,, rj,)

Since only subsonic inlet conditions will be prescribed, the case 1.

and v < 0 is not considered.

4. Formulation of the Column Esuations 2 I 0

For 1 < i . i 0 and inside the duct, we have from the comparison of

Equation (82) with Eqiuations (39), (45), and (49), when v. > 0,

SU( -)aa j 2 to j,

SUB(l) = 0

SUPER(J) b j - to Jm -

sUP.R(3X) - 0 (92)

DiAG.(J) w Yi e, + a + b j -2 to a -1

RHS(J) a- vij(e~CfD1 , +1 . d~Cf, - j) J -2 to J. - I

DIAG(1) - -(vil ei + b1)

I= (1) - -v11 (cirfj +. I' dj~1i _ +0(,R (xi)

DIAG(JM) - (vj •3 i + sai )
3m 3

By comparison of Equation (82) with Equations (41), (46), and (50), w

have for the supersonic flow, vi, < 0 and vi. 1 j < 0, the following terms

in place of the ones above:

DLAG(J) il.lc 1 - a -bj ) 2 -c , SM-

w * (e 1 ? j -d 1 4 $Pi- 2 ) 24j<a3 .1 (93)
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0

DIG( )" = i~ 1 l~ -b1.

DIAG(JM)- vj~1 j c 1  -aiM

mis(JN) - v,- 11 . (eillf_ Is "di-l (P i-2J) M2 R' (x)

For 1 4 i :- 0 in the exterior flow over the nacelle we have,

analogous to Equations (92) and (93),

SUB(J) aj+jm 2 - J Jma -J 3  " 2

sUe(l) - 0

SuPzR(J) - bJ+im (94)

suPE(M-JM-l) - 0

DIAG(J) - -(uij+j m + j+jm + bim+ja 2 : J 'SJ jM -im "1

S(J) - "U ij+j (ci i+' J+j+ dfi-i J ) 2.j - jM -1

For comparison of Equation (82) with Equation (51) we have

DIAG(l) - -(u ia+1 *i bi +l)

FMS~l) U Uj+ ai i1(
HS(l) - - . +di Y i.J +1) + *o ' (xi)

where C( 3 OrJm+l/2 /ris+l (rj 2 rj) . The hyperbolic case uij 'e- 0

can be written down by following the pattern of Equations (92) and (93).

The equations, JMX-JM-1 in number, are solved independently of the duct flow.

5. FormLlation of the Column Equations i > 1 0

For i > i0 , the points are downstream of the trailing edge of the

£ nacelle and the entire column of equations to be solved simultaneously

encompasses both the duct and exterior flow. For all points except
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1 -,i and j3+1, we have

suD(J) - aj sun(i) - 0SUBW - ai SUM 0(95)
sUPER(J) -b SUPER(JX-l) = 0

For J < j m,

DIAG(J) -- (v i ei + a + b3 ) for vii• 0

= (v i-jci. -a3 -b3 ) for vii< 0 (96)

RHS(J) -v j (ci ? +d i.fi-i ) for vij > 0

v i-Ij (ei~llzlj -di-fi -j) for v j 4 0

For j > JS -1,

DIAG(J) = -(uije i + aj + b ) for utj > 0 (97)

(ui. ji_l -aj -b ) for ut, 4.0

FMs(J) - -u j (cifi+j + di(fi..lj) for , j 0

"u (ci-t(f _lj - i-2j) for uJ 4 0

For the lower boundary condition we have

DIAG(1) - - (v iei + b1 ) for vil 0

- vi.1 1 ci.1 -bI  for vil 0

Rs(i) - -v l (cifiU + difi._) *( R (xi) for vi> 0

M i - (ei~1C i11 l - di - 1 + ~ R (x ) for v 4 0

The calculation of the vector components for JM and JM+l resulting from

the boundary conditions on the free streamline are somewhat more complicated.

Let DTAGri) and DIAG(JM+l) denote the quantities computed from Equations

(96) and (97), respectively. Then from Equations (73) and (74) we see that

A1 * m AG(Jl) a3 4 1a
( )lB" -Rs (,,),,1)
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A2 - -DL(JM) bj (98)

B2 - RHS(JN)

Let g, - 1 (3a, b ).1 iim

9 2 (a + 3b ) (99)
ma

£ a M2b3 j JMl

and 2
Ga bjL+ +a G m 2 a

m J+1-J.j- 6 dOj J 3 +1

G2 9b g3 G7= 8iMb b
jm3 1i j a +1

3g3 ~~1 2b (100)G3 a 3g3+g2 GS8 1 b im

04 - 9"i G6  9 00 8g. +
3- 42 a +gi

Then for JM and JM+I we have

SU (JM) aG

DIAG(31) -(G2 + G3 A2 )

SUPER(J1) Q 2 + G8 A"  (101)

RKS (Jl) m-G1 + G9B2 + G

SI3B(,fl) aG 6A2 -l

DIAG(JM~1) G4 SGA,

sUM (JM+l) -01

FN(Ml)-G~ - C6 B2 + GB 1

The G constants are computed once and for all at the beginnin of

0 calculations by the subroutine MESH.
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APPENDIX II: INSTRUCTIONS FOR USE OF THE PROGRAM TRANSDUCT

1. The Input Data Cards

Te parameters required by the program are read in by a namelist called

PARAM. These parameters are designated by the notation listed and defined

below:

Namelist PARAM

LSERES Series number of the flow configuration.

LRUN Run number of the series.

XMA Mach number of undisturbed exterior stream.

XM Mach number of expanded fan Jet flow far downstream. When
starting from an initial parallel flow (MODIN = 1), XMJ
must be less than one for the solution to converge. If a
supersonic value of XMJ is required, then a sequence of
solutions with XMJ incremented by .05 or .1 must be run
until the value of XJ0 is reached.

NMAX Maximum number of iterations to be computed. This is
chosen on the basis of maximum computing time allowed for
each run and is discussed at the end of this section.

JMX Total number of radial grid points defining the mesh (J
index).JX - 41 for the exa.les described in the report.

IMX Total number of axial grid points defining the mesh (i
index). IMX - 60 for the examples described in the report.

10 Index for the value of x nearest the trailing edge of the
fan cowl. Grid must be constructed so that trailing edge
lies at midpoint between grid points X(I0) and X(IO + 1).
10 is 33 for the computed examples in the report.

JM Index of largest radial mesh variable in the duct flow. JM -
20 in the example flows.

MODIN If MODIN - 1, potential field is initialized for uniform
flow. If MODIN - 2, potential field from cards punched on a
previous run is read for the initial potential field, P(I,J).

S DOUT If MODOUT a 2, th.-Veetial field from the solution is
punched on cards. If MCDOUT . 1, no data in punched.

0
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Namelist PAPAM

Linear If TRUE (T), the linearized subsonic flow is computed.
If FALSE (F), the complete non-linear transonic small
perturbation equations are solved.

Wi over-relaxation parameter for subsonic colusns. A value
of 1.4 is suggested. However, it may vary between 1 and
1.9, but larger values than 1.4 may lead to divergence of
the solution.

CPNAC Coefficient of pressure on the fan cowl at left boundary
of Fig. 2 for computingwhich in the present formulation
must be restricted to subsonic values. This number is
usually taken from experimental measurements. The remain-
ing values along x = 0 in the outisde stream are computed
to vary like l/(ri+I)3/2. This is the same as the incompres-
sible solution from a source and sink at x = + I. (see p.
486, Sec. 16-26 of Milne-Thomson (10)). This-formulation
was chosen for simplicity and convenience and should give
a fair distribution for most calculations.

NA Number of iterations between updating ofP.value at duct
input. When the number is large, the solutions may later
start to diverge if 9xvalue is not correct. Suggested
values are 20 to 100.

PXIN Starting inlet value of 0 at the fan plane. In the present
form of the program the Astribution of v. is uniform across
the fan plane. This value is updated evi'ry NA iterations
when WPX > 0. A first estimate is required and a reason-
able value is obtained from Eq. (27) using

m = Af/Ae

with the aid of Eqs. (11), (16), and (17) to determine KI .
The quantity Af is the duct area of the fan plane and Ae
is the area of the duct at the transverse plane through the
fan cowl trailing edge.

DRFAC Stretching factor for adjacent mesh increments in radial
direction. Used for expanding the mesh in the far field
where the flow does not change rapidly. DRFAC must satisfy
the inequality: 1: DRFAC < 2. Values of 1.15 and 1.2
were used in the examples in the report. Its value is
determined by how many points are in the grid and how far
mesh is to be extended.

ERR Maximum error allowed for convergence. If the maximum
difference between two iterated values of 0 becomes less
than ERR, the computation is terminated; otherwise, the

0£ program is terminated after NMAX iterations. Suggested
0* value for ERR is 0.0001.

4
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Namelist PARAM

WPX Factor for updating 50x at duct inlet. 0 d WPX ! 1.
If WPX - 0, then old value is retained. If WPX = 1, then
now value computed from mass flow far downstream of duct
is used. WPX - 1/2 updates with the arithmetic mean of
former and newly computed values. Until one observes how
the updated values change every NA iteration, the value
of 1/2 is a safe value for starting.

NP Number of iterations between intermediate printout.

A typical set of PARAM data cards is presented below. Each card is

punched starting in column 2.

$PAaAM MODOUT,
LSERES-5, MODOUT-2,
LRINm, LfIMAR.T.,
XMA.8, LIIEAR.F.,
XVJ,..85, Wl-l. 3,
uxl-.o, CPNAC--O. 06,
JMZ-41, NALO,
DM&, PXfIinp..21,
10 3%, DRFAC-I. i,-

J14-15, ERR-0.0001,
IDIk, NMreO,
MODIIM, $END

For the paramters MDIN, MODOUT, and LIAR, the last of each pair

of cards read is the information used by the program. Also, more than

one parameter may be punched on a single card. A space mst be left

between the comm and the next paramter nam.

After the PARAM list is read, then a single card with 12 integers

punched according for FOAT (1214) is read. These are index values of

the x grid at which intermediate values of (f and (X are printed out

every N4P iteration.

a
i
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The coordinates for the duct and nacelle boundaries are read by

the subroutine BODY along with the axial coordinates for the mesh points.

If ODIN in the parameter list is set equal to 2, then the cards for

P(IJ), the values of 9F at the mesh points from a previous run must be

included at the end of those data cards read in by the subroutine BODY.

In sunary, the data deck for the program consists of the following

(see Figures 12 and 13):

1) Title card: ANDUCT.

2) End of record card (6,7,8 punches in column 1).

3) PARAM cards.

4) Card for the twelve intermediate values of the x index for which inter-
mediate values of the potential I* and the derivative 5O are printed
every NP times. Card FORMAT is 1214.

) Coordinates of the x grid points. Punched on cards according to the
FORMAT 10F8. 6.

6) Deck of boundary data cards. The make up of this deck will depend upon
how contours are defined and data are read by the subroutine BODY
(see Figure 13).

7) For MODfIem, the '? grid values punched from a previous run must be
included.

For the computed examples described in this report, the running tine

was 0.61 seconds on the CDC 6600 for each iteration with 41 X 60 a 21460

grid points. Since the number of computer operations is almost directly

proportional to the number of grid points, then the running time can

quickly be estimated for grids with more or less points than 2460.

i
0
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FIGURE 12 ILLUSTRATION OF THE DATA CARDS REQUIRED BY

THE PROGRAM FOR MODIN - 2.* FOR MODIN -1,g

P(I,J) DECK IS OMITTED.
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FIGURE 13 SUGGESTED FORM OF INPUT DATA FOR BODY SUBROUTINE

WHEN COORDINATES OF CENTERBOIDY, DUCT OUTER WALL,
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. Subroutine Body

This is the subroutine in which the wall boundary is read and the wall

slopes computed at the axial positions of the mesh. The X or axial

coordinates of the mesh points are also read in this subroutine with the

statement:

READ (5,1010) (X(I), I = lThX)

1010 FORMAT (10F8.6)

Since the contours for the centerbody, outer walls of the duct, and the

fan cowl are not defined in any standard convenient coordinate system,

this subroutine at least in part may need to be reprogrammed for each new

geometry. The contours are fitted by a spline program, then the values of

the radial coordinates and the slopes at the mesh points X(I) are computed.

When coordinates are used to describe the contours, the set up of the deck

described in Figure 13 is suggested with appropriate read statements

included in the BODY subroutine.

The subroutine SPLINE used by BODY to fit the coordinates is called by

the statement

CALL SPLINE (MODE,N,X,Y,D,E,W,JJB,X,YB,YP,YPP)

Mode should be set to zero at first entry to set up the coefficients

for fitting the N points (X,Y) and greater than zero thereafter for

finding points on the same curve. XB is the value of the abscissa X at

which the value of the ordinate YB is desired. Since the slope boundary

conditions are required for the main program, XB are the values of the x

grid points X(I) for which the contours are defined. YP and YPP are the

first and second derivatives of the fitted curve at the point X = .B.

E and W are storage required by t he program and both must be at least 3N1
0
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Long. The indices JJ indicate whether end points of the fitted curve

satisfy the slope or curvature conditions.

JJ(.) = 0 2nd derivative at left end point given by D(l).

JJ(l) = I Ist derivative at left end point given by D(l).

JJ(2) = 0 2nd derivative at right end point given by D(2).

JJ(2) = I Ist derivative at right end point given by D(2).

A thickness ratio DELTA and mean dimensionless radii RIfMfNR for the

centerbody and RF for fan cowl must be computed in the program from the

contour data. RINNER is defined as the average of the smallest and largest

radii along the centerbody and is the radius at which the linearized bound-

ary conditions are satisf.ed. The radial grid is constructed so that

fRIER = R(l)-(R(2)-R(l))/2. The thickness ratio DELTA is the difference

between maximu and minimum radii of the centerbody divided by its length.

For the computed examples, this length was conveniently chosen as the dis-

tance from the duct fan plane in Figure 2b to the point of maximum body

radius.

Similarly, the mean radius RF at which the linearized boundary conditions

on the fan cowl, on the outer duct wall, and on the free jet boundary are

satisfied is the average between minimum duct radius and maximum cowl

radius. The radial grid is set up so that the midpoint between R(JM) and

R(r4+1) is the radius RF. With RF and RINMEP computed in the subroutine

BODY, the main program computes the radial grid points. Evenly spaced

points are computed for the duct flow and the increments between radial

positions of the exterior flow are stretched by the factor DRFAC defined

in the namelist PARAM.

;L
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For the boundary conditions required in the main program, the BODY

subroutine must compute the derivatives divided by the value of DELTA for

the centerbody, outer duct wall, and the fan cowl. The notation used by

the main program is:

RX(I), I 1 to IMX. Slope of centerbody divided by DELTA.

RLX(I), I = 1 to 10. Slope of outer wall divided by DELTA.

RUX(I), I = 1 to 10. Slope of fan cowl divided by DELTA.

In summary, the subroutine BODY must be programmed to compute RIMER,

the mean radius of the centerbody; RF, the mean location of outer duct wall,

fan cowl, and free Jet streamline boundary; and the slope boundary data

RX, RLX, and HUX defined above at the x grid points. The subroutine must

also compute the dimensionless radii of the centerbody, RS1; outer duct

wall, RS2; and fan cow, RS3, which are required for the subroutine STRMLN.

3. Subroutine STRMN

This subroutine computes the radial position of the streamlines at the

x mesh positions. Along each radial mesh line R(J) the streamline is

defined by X;"

R,(X i ) - (R1(x1 ) -f( fA)

7-

where is the complete velocity potential. In terms of the perturbation

potential, , this becomes, since r Z r1 and ' -

a
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x x

for points outside the duct flow.. The derivative SOP at the points R(J)

is found by fitting a polynomial through three adjacent points along a line

x constant and differentiating it to find '7  . The x integration is per-

formed by the trapezoidal rule.

4. Descrigtion of Printout

After the printing of tae parmeter list, the coordinates and slope of

the lower and upper fan contours and of the nacelle are printed for values

of x corresponding to the mesh points. The actual slopes are printed in

the column labeled DRR (for derivative). The slopes divided by the thickness

parameter are used as boundary conditions in the main program and are

designated by RX, RLX, and RUX for the lover fan contour, upper fan contour,

and nacelle, respectively. Th following is a glossary of the notation used

in the printout.

P(I,J) Val&u of perturbation velocity potential at X - X(I), R - R(J)
of the msh

PKSX Value of Wf at R(JM).

PR.X(IJ) value Of ?9at X(M) RM~.

R Dimensionless radial variable. (Multiplied by T= M
for printout of PSIX).

PRIX Boundary vaLusa of at - 0.

a
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At every NP iteration through the mesh a partial printout is made for

the purpose of monitoring the convergence. At this time, the number of

iterations required for each column is printed by two rows of integers in

groups of ten. The first row of integers corresponds to the column itera-

tion in the duct for I 1 10 and the entire column for I > 10. The

second row corresponds to column iterating for the region above the nacelle.

The maximum error is printed out next, along with the I,J point of the mesh

at which it occurs.

At the twelve axial positions designed at ILINE(K) two rows of ? at J-1

and JM are then printed followed by two rows of V at J = JM and 1.

The eighth row gives the single quantity 4 r at X = X(I0), the nacelle

trailing edge. Every NA times the value of 9 at the duct input is

calculated, printed, and updated.

In the final printout from the subroutine PRTOUT, the column variables

are

CPB Coefficient of pressure on the body based on the exterior
stream conditions.

CPS Coefficient of pressure on the free streamline based on the
exterior stream.

PRI Value of Y along radial position J - JM.

R-HF Deviation of free streamline from the trailing edge radial
position.

REVSYM
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5. Operation of the Program

By means of the intermediate printout every NP times, the rate of

convergence of the solution can be monitored. Completely subsonic flows with a-

initially prescribed uniform flow ( 0, MODIN=l) usually converge success-

fully. When the Jet Mach number is chosen greater than unity, starting

with Y 3 0 leads to an immediate arithmetic error stop when the program

encounters a negative index for the P(I,J) variables. To find a solution

for a supersonic free Jet, the Mach number Mj (XMJ) Must be increased by

small increments such as AM = 0.05 or 0.1, starting with a subsonic value

and obtaining partial convergence at each Mach number. If the change in

Mach number is too great, the solution may take longer to converge or it

may diverge. Considerable computing time in obtaining a new solution can

be saved by using the P(IJ) grid data from a solution for which the

boundaries are similar to the new configuration and the Mach numbers are

close to those for the desired solution. Solutions with large imbedded

supersonic regions usually make poor starting solutions since they often

cause the iterations to diverge.

There are three programed stops. STOPS 1 and 2 occur with successful

completion of the computations. STOP I occurs for MODOUT=I for which no

data is punched. STOP 2 occurs for MODOUT=2 for which the potential field

is punched on cards as a starting solution for a later run. STOP 3 occurs

when the maximum value of the difference between consecutive values of

exceeds 5, indicating that the solution in diverging.

* A quantity important to the convergence is the value of r at

the fan plane (PXIN in PARAM list). When only a fair estimate is provided

q
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and the value is not corrected in the iteration process, it was found that

the solution converged to a minimum value for the error (ERR) which was

greater than 0.0001 and then started to diverge. Improving the value of

PXIN caused the solution to converge to a smaller minimum value of ERR

before again starting to diverge. In the program, PXIN is updated every

NA times by estimating the diameter of the jet far downstream, computing

the mass flow rate through this cross section, and determining CX (PXIN)

which yields this value of the mass flow rate at the fan plane. The value

of f determined this way is close to that value of which leads to

the most converged solution but not necessarily equal to it, because of the

approximate way of computing the downstream duct mass flow.

a
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